
A Hardware/Software Co–Execution Model
Using Hardware Libraries for a SoPC Running

Linux

Alejandro Gómez-Conde, José de Jesús Mata-Villanueva, Marco A.
Ramı́rez-Salinas, and Luis A. Villa-Vargas

Center for Research in Computing,
National Polytechnic Institute, D.F., Mexico.

alegzc@yahoo.com.mx, gsusmata@gmail.com, mars@cic.ipn.mx,

lvilla@cic.ipn.mx

Abstract. A SoPC (System on a Programmable Chip) is the combina-
tion of computer architecture, IP designs, and an embedded operating
system implemented on a FPGA. A SoPC developer needs to possess
skills in advanced hardware design and efficient software programming
to make high performance solutions on this platforms type. These re-
quirements have resulted in a complicated and error-prone development
process, therefore the dissemination of this promising technology has
been confined to a small group of developers. To address this problem,
our proposal exemplifies a Hardware/Software co-execution model where
software tasks are assisted by hardware libraries in a SoPC.

Keywords: System on a Programmable Chip, Linux FPGA system,
Mixed execution mode, Function interception.

1 Introduction

A SoPC system requires a FPGA with a processor core that can be either hard or
soft. This designation refers to the flexibility or configurability of the core. Hard
cores have a custom VLSI layout that is added to the FPGA in the manufac-
turing process. They are less configurable and tend to have higher performance
characteristics than soft cores. Although soft cores are highly configurable they
use logic elements as well as routing resources within a FPGA that increases the
complexity of hardware design and reconfigurable stages. The overall implemen-
tation of a SoPC system needs to meet one or more of these constraints:

– Performance
– Execution time
– Small footprint area
– Communication and connectivity
– Implementation cost
– Upgradability
– Low power

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 287–297

Paper Recived 01-10-2012 and Acepted 12-11-2012

The outline of this paper is as follows: Section 2 describes our proposal.
Section 3 presents the experiments and results for the implementation process
of a SoPC that uses a Hardware/Software co-execution model that includes the
creation of a hardware platform, the integration of the Operating System and
the implementation of the bitswapper hardware function. Section 4 discusses
related work. Finally a conclusion is given.

2 Hardware/Software Co-Execution Model

In a traditional execution model, a user program often includes references to
software libraries. Once the user–program starts execution it requests software
functions; those functions are grouped together in software libraries that may
be statically or dynamically attached to the user program.

A Purely software-based execution model does not always take advantage of
the hardware within the platform nor is it able to delegate software tasks to
hardware modules. As a direct consequence the execution model does not al-
ways meet the performance or execution time constraint for a specific task in a
SoPC system. Our approach was to develop a Hardware/Software co-execution
model for critical applications in a SoPC. Our proposal uses a library-based ac-
cess model and extends its functionality to support the execution of hardware
functions. Figure 1 shows the proposed execution model. The idea behind inter-
ception is to assist a software task by hardware modular functions in a seamlessly
manner. If the hardware function is not available when the request is issued then
the process that requests such functionality should either wait for the hardware
function to be programed into the FPGA or follow its execution path until the
requested function is provided. Our proposal waits for the hardware function to
be configured and then continues its execution assisted by a hardware function.
This capability adds upgradability to a SoPC system because there is no longer
the need to modify the application source code to embedded hard-coded rou-
tines that interact with hardware functions. If a new SoPC system is needed,
our project will provide a Hardware/Software partitioning model to get the best
performance at the lowest implementation cost using Hardware/Software parti-
tioning, co-design and co-synthesis techniques but even if there is not access to
the source code, an application can be assisted to reduce its execution time.

Our proposal uses the Dynamic Linking Loader service but instead of calling
the original software library function, it calls a hardware modular function that
might be programed at run-time in the reconfigurable area of the SoPC. The
communication protocol between the user program and the hardware function
is implemented by a dynamic library and a character device driver. The main
reason for using a character device driver is that it can be dynamically loaded
at the system startup and all the functionality is in the kernel module; the dy-
namic library could be set up to capture function calls for specific programs
while the rest of the systems work as usual. This behavior could be activated or
deactivated at any time while the system is still running as long as the hardware
function is not in use. Once the hardware function has been configured and the

288 A. Gómez-Conde, J. de J. Mata-Villanueva, M. A. Ramírez-Salinas, and L. A. Villa-Vargas

System Calls

User
Program

Libraries

Sw Hw

Other
Sub-systems

Device Driver

CPU

Function call

Function interception

O
S

 L
a
y
e
r

U
s
e
r-

S
p
a
c
e
 L

a
y
e
r

H
A

L
L
a
y
e
r

H
a
rd

w
a
re

L
a
y
e
r

Function prototype:

res = HwFunc(int a, int b);

open_dev();

send_data();

receive_data();

close_dev();

FPGA

HWFUNC

Fig. 1. Proposed execution model.

software access layer has been properly set up, the program can take advantage
of the functionality provided by the hardware module. A performance penalty is
expected to exist as a direct consequence of the reconfiguration process at run-
time when a hardware function is called for the first time. When a large amount
of data is processed by the function, the impact of the reconfiguration process
becomes smaller.

3 Experiments and results

3.1 Hardware Platform

A Linux-capable SoPC hardware platform was built up using Xilinx’s EDK
tools. Figure 2 shows a brief description of the architecture S1 implemented in
the FPGA of the ML507 development board. It integrates the PowerPC 440
Processor, a DDR2 memory controller, interrupt controller, serial port, JTAG
debug port, float point unit, System ACE, a timer, and some other peripherals.
Although Xilinx’s tools helped in the integration and configuration processes, it
was necessary to incorporate a description of the elements within the hardware
platform besides of the xparameters.h description file.

D. Gibson and B. Herrenschmidt in [1] propose a device tree model to gen-
erate a hierarchical description of a hardware platform. The most important
properties of the flattened tree obtained from the device tree model are: relocat-
able properties that allow the bootloader or the kernel to move around the blob

A Hardware/Software Co-Execution Model Using Hardware Libraries for a SoPC Running Linux 289

Fig. 2. Architecture of the hardware platform S1.

tree as a whole, without need to parse or adjust its internals. It is also possible
to insert or delete a node or a whole subtree; this property will help us integrate
hardware functions without having to recompile the kernel.

Xilinx in collaboration with the Open Source Community developed a BSP
package that was integrated into the SDK to generate a device tree description
for the S1 hardware platform.[2]

The hardware platform S1 was tested using Push Buttons 5Bit GPIO and
LEDs 8Bit GPIO hardware modules in stand alone mode using Xilinx’s SDK.

3.2 Integration of the Operating System

An embedded operating system was generated for the ML507 Board using Poky
framework tools[3] and meta-xilinx[4] specification layer. This framework pro-
vides a structured scheme to integrate architecture specifications in the kernel
compilation processes and provides a cross–compile platform to create, test and
debug user–space as well as kernel–space applications. Figure 3 shows the work-
flow used in Poky to generate the Operating System.

U-boot was chosen as the bootloader because Xilinx’s modified version of U-
Boot has been successfully adapted and tested to work with Virtex5 FPGAs.[5]
The meta-xilinx configuration and specification layer was modified to success-
fully generate the kernel image and the bootloader.

The most important files generated using Poky framework are: The file u-
boot-ml507.ace contains the FPGA configuration bitstream and the executable
file for U-Boot in a System ACE file format. It will be loaded at startup to config-
ure the FPGA, and start the system’s boot process. The file uImage-virtex5.bin
is a binary file of the kernel image. It is adapted to be launched by U-Boot.
The file uImage-virtex5.dtb holds a flattened tree blob that represents the inter-
nal hardware architecture implemented within the FPGA. The file poky-image-
minimal-virtex5.tar.gz is a compressed image of the SoPC file system (including

290 A. Gómez-Conde, J. de J. Mata-Villanueva, M. A. Ramírez-Salinas, and L. A. Villa-Vargas

Fig. 3. Poky Architecture Workflow.

/boot, /dev, /etc, /home, /lib and others). The file modules-2.6.37+-r12-
virtex5.tgz is another compressed file that contains kernel modules that are dy-
namically loaded at run time.

In order to run the Operating System on the ML507 board the user must set
the configuration switch SW3 so that the FPGA is configured by the SysACE
as described in [6]. The Compact Flash must be partitioned in tree sections; the
first one must be formated as FAT16, the second partition should be ext3 and the
third partition should be used as the swap partition. The first partition must
have the u-boot-ml507.ace, uImage-virtex5.bin and uImage-virtex5.dtb

files in it. The second partition must be filled with the content of poky-image--
minimal-virtex5.tar.gz and the modules-2.6.37+-r12-virtex5.tgz.

The serial communication program kermit was used to explore the boot
process and the kernel startup. The last part of the output text shown in the
console for the boot process is presented below. The last four lines of text are
associated to the device tree blob and the kernel load respectively. The device
tree specifies architecture details that the kernel will use to properly setup the
system. The kernel image was generated using the uimage format that contains
the compressed vmlinux plus a few extra bytes of metadata that describe the
kernel load address and the image name.

CPU: Xilinx PowerPC 440 UNKNOWN (PVR=7ff21912) at 400 MHz

DRAM: 256 MB

FLASH: 32 MB

In: serial

Out: serial

Err: serial

reading uimage.dtb

25059 bytes read

reading uimage.bin

A Hardware/Software Co-Execution Model Using Hardware Libraries for a SoPC Running Linux 291

2096237 bytes read

At the end we obtained a fully functional Linux-based Operating System
that runs on the ML507 board; the kernel was generated using the 2.6.37 Linux
kernel source code.

3.3 The Hardware Functional Unit

The hardware functional unit bitswapper changes the endianness of a data word
from big endian to little endian and vice versa. This function uses Xilinx’s IPIF
module as an interface between the functional unit and the system. This func-
tional unit has been chosen for its simplicity and ease of implementation; it
is not yet a real functional unit, but it lets us debug integration procedures
and provided valuable information to select the best communication model to
be implemented between a hardware function and the software layer. Our first
approach was to attach it to the PLB bus. It uses two registers and a basic com-
munication protocol to send and receive data to and from the system through
the IPIF interface.

Xilinx’s EDK tools were used to attach the bitswapper hardware module to
the existing platform; the core functionality of the proposed function is presented
below.
process(datain)

begin

for i in datain’low to datain’high loop

my_swap_sig(i) <= datain((C_SLV_DWIDTH-1)-i);

end loop;

end process;

dataout <= my_swap_sig;

Figure 4 shows the synthesized modular hardware function and fig. 5 shows the
simulation results for the core functionality of the proposed hardware modular
function.

Our implementation used a character device driver to provide communica-
tion services between the hardware function and the user program. Therefore a
special file entry in the /dev folder was created; it was named hwfn1. The ker-
nel module implements device init, device exit, send data, receive data,
device open, device read, device write, device release, and other func-
tions that are commonly related to character device drivers. Our proposal gen-
erates a dynamic library as described in [7]; to prove the function interception
process the software library function bitswap was created; in our embedded
development environment this software function is provided by the dynamic li-
brary libhw.so. The Dynamic Linking Loader uses a special feature that is
controlled by the system variable LD PRELOAD; in order to intercept the bitswap

call another dynamic library was created using the same function prototype but
implementing the communication protocol through the file descriptor associated
to hwfn1. The kernel uses the services provided by the character device driver
to send data to and receive data from the hardware function.

292 A. Gómez-Conde, J. de J. Mata-Villanueva, M. A. Ramírez-Salinas, and L. A. Villa-Vargas

Fig. 4. RTL Schematic representation for Hardware Functional Unit.

Fig. 5. Simulation results for the core functionality of the bitswapper function.

Table 1 presents a summary of the FPGA resources used in the bitswapper
hardware modular function and for the SoPC system implementation.

Table 1. FPGA resource utilization.

Resource type Bitswapper SoPC System Available

Slices 88 5668 11200
Slice Registers 109 8939 44800
Slice LUTs 86 9926 44800
IOBs 0 210 640
BlockRAMs 0 40 148
Memory used (kib) 0 1404 5328
ICAPs 0 1 2
DCM 0 1 6

4 Related work

Hayden Kwok-Hay So et al.[8] presented a very interesting Hardware/Software
co-design methodology based on BORPH (Berkeley Operating system for Re-

A Hardware/Software Co-Execution Model Using Hardware Libraries for a SoPC Running Linux 293

Programmable Hardware). It included an Operating System designed for recon-
figurable computers that implements hardware modules designed by the user; it
also provides a native kernel support to implement processes in FPGAs using a
homogeneous Unix interface for hardware and software processes. An interesting
issue of this project was that a hardware process implemented into an FPGA
inherits the same level of service from the kernel, as a software process does.
BORPH includes file system support, interrupt support, and scheduling capa-
bilities for hardware processes; it also provides common Unix APIs that interact
with hardware processes in a seamlessly manner. The unified file interface allows
hardware and software processes to communicate via standard Unix file pipes.
BORPH was implemented on a development board with five FPGAs; one was
used as a master unit while the others each held an implementation of a hard-
ware process. They also developed a Hardware/Software interface that allows
application development, migration of software procedures to hardware modules
and a comparison among Hardware/Software implementations of the same ap-
plication. Although they provided a revolutionary implementation of hardware
processes, they only implement user hardware design into FPGAs and did not
consider partial reconfiguration.

Qingxu Deng, et al.[9] propose a Hardware/Software unified architectural
model for an FPGA implementing partially runtime reconfigurable services.
Their proposal implements scheduling services and on-line placement of hard-
ware modules within the same FPGA. Hardware and software tasks were im-
plemented as processes but each hardware task uses a software communication
layer to interact with the Operating System. They also implement a modified
version of the system call exec to recognize HELF files (Hardware Executable and
Linkable Format) and extract the information required to program a hardware
IP-Core and its dedicated communication software layer from the HELF file; this
new type of executable file format is an extension to ELF. A key feature of this
proposal is that it implements a routing and placement algorithm to reduce the
required time to schedule and execute hardware tasks in the reconfigurable area
of the FPGA. Even though this proposal presented a new approach to create an
abstract model of a hardware process that can be launched from user-space it
is only fully functional for that specific platform since other platforms may not
recognize the HELF executable file format; besides that, the functional elements
of this proposal, at kernel level, cannot be easily migrated into other architec-
tures due to the fact that they are deeply merged into a specific version of the
Linux kernel.

Vaibhawa Mishra et al.[10] propose a dynamically reconfigurable SoPC that
uses an Operating System based on the 2.6.34 Linux kernel. They implement a
minimal hardware platform in the ML507 development board using the FPGA,
the PowerPC 440 hard core processor and other peripherals. This proposal uses
floating–point hardware modular functions to prove the reconfigurability of the
system. They propose a functional model that is similar to a peripheral device

294 A. Gómez-Conde, J. de J. Mata-Villanueva, M. A. Ramírez-Salinas, and L. A. Villa-Vargas

model with the only difference of implementing one virtual device that can be
re-programed at runtime to implement any of the four floating–point functional
units developed. Although this proposal implements reconfigurability using the
hwicap IP-Core on a Virtex5 FPGA, it did not provide a major advantage over
other proposals made in the past.

5 Conclusion and future work

SoPC systems are about to be a major improvement in the mobile devices field.
Therefore our proposal is building up the required infrastructure to be able to
generate, test, validate, and improve our knowledge of this type of systems.

Task execution will no longer use a purely software execution model; nev-
ertheless, there cannot be a solid conclusion about which methodology shall
prevail.

This work aims to provide an overview of the challenges that are faced while
designing and implementing SoPC systems.

The products generated in this work are: a reconfigurable hardware platform
for SoPCs and Poky-Linux framework tools and a configuration layer to build
and integrate an Operating System to the ML507 board. The on going work
implements another communication scheme between the hardware function and
the software layer to compare and select a lower latency communication scheme
for the SoPC system. Our team is developing a set of hardware modules to
complement the actual hardware library.

Hardware functional unit bitswapper was developed and used to test the
SoPC system for both correctness and performance. Although it was designed for
test purposes, this modular hardware unit lets us explore the overall development
process over the little-known path of mixed execution model.

Although the operating system is still in the development phase and, even
when the hardware platform has not been tuned up to the maximum allow-
able performance, early results are promising. The Hardware/Software execution
model reduces the CPU processing load when using hardware functional units.

This work is part of the MASA Project, the current development stage focuses
on implementation specifically on upgradability.[11] Another on-going work of
this project has developed a framework for custom routing and partitioning, that
will enable effectively implementing relocatable hardware functions of variable
size (in terms of reconfigurable partitions) and number of input/output ports.

Future work will design, implement and compare our model with a system-
call based access model and a memory mapped access model that attaches a
hardware function to the user–process virtual memory.

A Hardware/Software Co-Execution Model Using Hardware Libraries for a SoPC Running Linux 295

References

1. D. Gibson and B. Herrenschmidt. Device trees everywhere. OzLabs, IBM Linux
Technology Center. February 13, 2006.

2. Xilinx Inc. Device Tree Generation. Online resources. http://elinux.org/

Device_Trees and http://wiki.xilinx.com/device-tree-generator Visited on
March 2011.

3. Poky Platform Builder. Online resource. www.pokylinux.org/ Visited on January
2011.

4. Xilinx Inc. BSP Specification Layer in Poky to support ML50x develop-
ment platforms. Online resource. http://git.yoctoproject.org/cgit/cgit.cgi/
meta-xilinx/ Visited on March 2011.

5. Xilinx Inc. Xilinx’s modified versión of U-Boot. Online resource. http://git.

xilinx.com/?p=u-boot-xlnx.git;a=summary Visited on April 2011.
6. Xilinx Inc. ML507 Evaluation Platform. Online resource. http://www.xilinx.

com/support/documentation/boards_and_kits/ug347.pdf Visited on Nov 2010.
7. U. Drepper. How To Write Shared Libraries. Online resource. http://people.

redhat.com/drepper/dsohowto.pdf , 2011.
8. H. Kwok-Hay, A. Tkachenko and R. Brodersen. A Unified Hardware/Software Run-

time Environment for FPGA-Based Reconfigurable Computers using BORPH. De-
partment of Electrical Engineering and Computer Science University of California,
Berkeley. CODES+ISSS’06, October, 2006.

9. Q. Deng, Y. Zhang, N. Guan and Z. Gu. A Unified HW/SW Operating System for
Partially Runtime Reconfigurable FPGA based Computer Systems. 2008.

10. V. Mishra, K. Solomon Raju and P. Tanwar. Implantation of Dynamically Recon-
figurable Systems on Chip with OS Support. International Journal of Computer
Applications. 2012.

11. L. Villa , M. Ramı́rez, O. Espinosa, and C. Peredo. Modular Architecture for
Synthesized Applications. Center for Research in Computing, IPN. Mexico, DF.
http://www.microse.cic.ipn.mx/masa-es , 2010.

296 A. Gómez-Conde, J. de J. Mata-Villanueva, M. A. Ramírez-Salinas, and L. A. Villa-Vargas

